ID generation strategies

Mike Shkolnik, Scalabium
2000

ID generation strategies

In this small article I want to describe a different methods of ID generation.
ID is an unique identifier that allows to identify a record. In relational terminology an
unique identifier is called a key.

1. IDs should have no business meaning

From own experience I sure that each table must have absolutely no business meaning
ID. Any column with a business meaning can potentially change and it’s a fatal
mistake to give your keys meaning. You can define the alternative key with your
unique “business” identifier but your primary key don’t must depends from some
“today unique conditions” which are live today only.

Of course, to have a ZIP, telephone number, currency code or country/state
abbreviation as ID is very alluring from first look, but my suggestion — don’t limit
own development from first step. The life will change... ZIP in each country can have
the different structure, phone station can change first digits in number, currency can
be changed, and country can be divided on parts...

The each primary key in one table is virtually guarantied to be used as a foreign key
in other tables and when your business code will change (to add a few digits, convert
the number to alphanumeric etc), you need to make a lot of changes in your database
and application’s sources.

Also exists the second reason of this advice. At most cases you’ll join a data from few
tables in your SELECT-statement. For example, you must joins the ORDER and
SUPPLIER tables by ID CUSTOMER field and selects a name and address of
supplier. But the all operations with numbers (I suggest to have the ID as integers) in
any database server and operating system was optimized by performance but
string/date/etc operations will request a lot of additional conversion and comparisons.

Of course, the some developers can say that business ID will reduce the join using
(for example, the code of country will store in SUPPLIER table as foreign key from
COUNTRY table) but I must say that it’s not a true because in 99.999% of common
task you needs a some additional attributes from object and you’ll use a joins but in
this case you’ll lose in performance.

2. ID uniqueness

When you assigns the ID, you must decide the two problems:
= level of uniqueness for ID
= how to obtain the ID value

Mike Shkolnik, Scalabium, 2000 http://www.scalabium.com 1




ID generation strategies

Level of uniqueness is a very important but developers don’t spend a needed time on
solution of this task. This opinion is wrong because it’s a possibility to retrieve
limitations in the future life of your applications. You must select a level of
uniqueness, which is needed for you in first steps of development.

There are a few levels of uniqueness that you need to consider:
= uniqueness within the table

= uniqueness within the logical partition of tables

= uniqueness across all tables

For example, the ID for customer can be unique:

= for CUSTOMER table only

= for partition of companies (CUSTOMER, SUPPLIER, CLIENT, RESTOURANT,
HOTEL tables etc)

= for all tables of database

In first case the value ID=15614 can be assigned to some customer, to supplier and to
invoice but all these values are different.

In second case the same value can’t be assigned to some customer and supplier
because these tables is from one logical partition of companies but you can assign this
value to order or invoice.

In third case this value can be assigned to one record only from any table in database:
either to customer or to supplier or to order or to invoice.

You must select a needed level of uniqueness in first step of development because a
lot of tasks will depend from this your choice. For example, data replication or rules
for semantic and/or syntactic validations.

3. Strategies for ID generation

As I wrote above the second task is how to obtain the key value. In this section I’1l
describe a most popular algorithms. You must select the one from them which will
allows to have a great performance and efficiency in run-time of your system. For
each type of system (or type of stored data) the effective method can be different and
you must select it for you. You must understand that algorithms of ID generation for
OLAP/warehousing and OLTP systems can be different.

PS: I suggest to select one strategy for all your tables and to generate the key values
by one algorithm. Only in systems where you must have a high performance on each
stage of data processing and you can’t increase the performance in other steps, you
must use the different strategies for other tables of same system.

PPS: also don’t forget that the large system will divided on parts with few developer
teams (or companies) but project leader must control the basic principles in own
hands. The strategy of key generation is one from such basic principles.

Mike Shkolnik, Scalabium, 2000 http://www.scalabium.com 2




ID generation strategies

3.1. To calculate a Maximum for Integer column

Before execution of INSERT-statement you must retrieve a MAX-value for
your Integer column which was defined as Primary Key. For this task you can
execute a simple SQL-statement:

SELECT MAX(yourPKFieldName)
FROM yourTableName

After that you must add one to this value and use it as the value for your key
of newest record.

The problem with this algorithm is that you must lock a table before
calculation of maximum value and unlock it after INSERT-statement for your
newest record. In else case the some newest records can try to insert a records
with same value PK (for example, in multi user systems).

Also with this algorithm you don’t have unique values for IDs across all your
tables (or partition), only for those stored within each table. Of course, you can
execute the SQL-statements for each table and use the max-value from them but I
not sure that this idea is good.

IMPORTANT:
If you’ll select this method for ID generation, don’t forget that you must strongly
control the collisions in linked tables after deletion of some records because if
you’ll delete a record with ID which is maximum on some moment, the next value
of MAX-value will be same as this deleted.

3.2. Using table with key-values

This method means that you have a some “container” in which a counter
values is stored. For example, you can realize this container as some additional
table.

This container can have a different structure. For example, in single row you
can store a counter value for each table in assigned column, or for each table to
create an additional table with one column and one row, or to use a multi-row
table, where you have one row per table with two columns: identifier for table
name and value for next key for this table.

The advantages of this strategy:
- you invoke a MAX-statement
- you have an unique values for all tables in one container
- for multi-row case you can lock a row/page only instead all table

Mike Shkolnik, Scalabium, 2000 http://www.scalabium.com 3




ID generation strategies

The disadvantage of this strategy is that this container becomes a bottleneck. If
you have a system with data, which will frequently inserted, you can cache this
values in memory.

3.3. GUIDs

To use the GUID for ID is good idea although you can’t calculate it on all
platforms. From this point I don’t think that GUID is a good for using in any
system. Also 128bits string for Primary Key is not for me too. Of course, you can
convert this string to number but don’t forget that for GUID generation the
operating system will read the identification number of network card in your
computer and current date/time. And after that you’ll run the own algorithm for
conversion into number.

3.4. In-built mechanisms of Database Servers

The some database servers (for example, ORACLE, INFORMIX, MS SQL,
INTERBASE etc) have built-in features for generation of unique values. These
DBMSs uses the one from two different mechanisms:

- autoincrement type or additional flag/subtype for number type) for field
definition (SERIAL type in INFORMIX or IDENTITY flag in MS SQL)

- some internal incremental sequence (SEQUENCE in ORACLE,
GENERATOR in INTERBASE).

The both mechanisms allows to define a start value and step of incrementation
but in first case you’ll retrieve a value after successfully completed INSERT-
statement (when value will be automatically generated and inserted into PK’s
field) and in second case you can read a next value in any time from application or
some stored procedure/function without any INSERT-statement execution.

So if you want to have an unique values across partition or all tables, you can
use a DBMS with sequence mechanism only.

But don’t forget that first mechanism with autoincremental type allows to
assign the ID without any your additional actions. In second case you must read
the next value from sequence and put it into PK of new record (for example in
trigger on AFTER INSERT action).

But the main disadvantage of these in-built mechanisms — they are can’t be
ported from one DBMS to other with small time of system rebuilding. This is not
a SQL-standard: each database manufacturer have the own unique mechanism for
ultimate performance and with own syntax. This can become a serious issue for
you.

The main advantage — the ultimate performance and solution on database side
but not on user application side. You have a guarantee that record will have a
correct unique ID in any case: when user will insert a record from your application
or database administrator or developer inserted this record from own tool.

Mike Shkolnik, Scalabium, 2000 http://www.scalabium.com 4




ID generation strategies

3.5. Pseudo-random values

For ID generation you can use the pseudo-random functions. The some from
them have a very high performance and uniqueness (like GUID, see 3.3), the some
from them have a limited warranty of uniqueness but can satisfy you. For
example, you can use the combination of user ID and current date/time with
milliseconds. As alternative to user ID, you can use the workstation ID or current
IP address.

This method can be useful also as additional logging system — you can always
say who and when created a record — without any additional actions!

Of course, also you can use the one from mathematical algorithms for
“random” value generation with high level of uniqueness.

3.6. Strategy of segments

When above I described the using of key-value table (see 3.2), I wrote that you
must use a cache for reducing of access to container with counters. Now I want to
describe the one method for caching.

The basic idea is that instead reading a key-value from container before each
execution of INSERT-statement, the “reader” (some client application or session)
can read the start value (for example, Integer value: 15600). And on the next few
INSERT-statements (for example, 100 statements) this “reader” can generate the
ID from own cache as 15601, 15602 ... 15699.

When this “reader” will fill the personal segment he/she must read a next start
value from container.

Of course, container must return a correct value for each segment and if you
will receive the 15600 as start for next 100 records, then your “competitor reader”
must receive the next segment: from 15700 to 15799.

The advantage of this strategy is that table-container is no longer as big of
bottleneck and the network traffic needed to get a value for ID is very little.

Also this method can be useful for replication because you can control the
segmentation per server/session.

Mike Shkolnik, Scalabium, 2000 http://www.scalabium.com 5




	ID generation strategies

